Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 88-96, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430036

RESUMO

Biosynthesis of silver nanoparticles using natural compounds derived from plant kingdom is currently used as safe and low-cost technique for nanoparticles synthesis with important abilities to inhibit multidrug resistant microorganisms (MDR). ESKAPE pathogens, especially MDR ones, are widely spread in hospital and intensive care units. In the present study, AgNPs using Ducrosia flabellifolia aqueous extract were synthesized using a reduction method. The green synthesized D. flabellifolia-AgNPs were characterized by UV-Vis spectrophotometer, Scanning electron microscopy (SEM), and X-ray diffraction assays. The tested D. flabellifolia aqueous extract was tested for its chemical composition using Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS). Anti-quorum sensing and anti-ESKAPE potential of D. flabellifolia-AgNPs was also performed.  Results from LC-ESI-MS technique revealed the identification of chlorogenic acid, protocatechuic acid, ferulic acid, caffeic acid, 2,5-dihydroxybenzoic acid, and gallic acid as main phytoconstituents. Indeed, the characterization of newly synthetized D. flabellifolia-AgNPs revealed spherical shape with mean particle size about 16.961±2.914 nm. Bio-reduction of silver was confirmed by the maximum surface plasmon resonance of D. flabellifolia-AgNPs at 430 nm. Newly synthetized D. flabellifolia-AgNPs were found to possess important anti-ESKAPE activity with low minimal inhibitory concentrations (MICs) ranging from 0.078 to 0.312 mg/mL, and low minimal bactericidal concentrations (MBCs) varying from 0.312 to 0.625 mg/mL. Moreover, D. flabellifolia-AgNPs were active against Candida utilis ATCC 9255, C. tropicalis ATCC 1362, and C. albicans ATCC 20402 with high mean diameter of growth inhibition at 5 mg/mL, low MICs, and minimal fungicidal concentrations values (MFCs). The newly synthetized D. flabellifolia-AgNPs were able to inhibit violacein production in Chromobacterium violaceum, pyocyanin in Pseudomonas aeruginosa starter strains.  Hence, the newly synthesized silver nanoparticles using D. flabellifolia aqueous extract can be used as an effective alternative to combat ESKAPE microorganisms. These silver nanoparticles can attenuate virulence of Gram-negative bacteria by interfering with the quorum sensing system and inhibiting cell-to-cell communication.


Assuntos
Anti-Infecciosos , Apiaceae , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Percepção de Quorum , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Candida albicans , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química
2.
J Biomol Struct Dyn ; 42(3): 1368-1380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37191027

RESUMO

A revival interest has been given to natural products as sources of phytocompounds to be used as alternative treatment against infectious diseases. In this context, we aimed to investigate the antimicrobial potential of Ziziphus honey (ZH) against twelve clinical bacterial strains and several yeasts and molds using in vitro and computational approaches. The well-diffusion assay revealed that ZH was able to induce growth inhibition of most Gram-positive and Gram-negative bacteria. The high mean growth inhibition zone (mGIZ) was recorded in E. coli (Clinical strain, 217), S. aureus followed by E. coli ATCC 10536 (mGIZ values: 41.00 ± 1 mm, 40.67 ± 0.57 mm, and 34.67 ± 0.57 mm, respectively). The minimal bactericidal concentrations (MBCs) and minimal fungicidal concentration values (MFCs) from approximately 266.33 mg/mL to over 532.65 mg/mL. Molecular docking results revealed that the identified compounds maltose, 2-furoic acid, isopropyl ester, 2,4-imidazolidinedione, 5-(2-methylpropyl)-(S)- and 3,4,5-trihydroxytoluene, S-Methyl-L-Cysteine, 2-Furancarboxylic acid, L-Valine-N-ethoxycarbonyl, Hexanoic acid, 3,5,5-trimethyl-, Methyl-beta-D-thiogalactoside, gamma-Sitosterol, d-Mannose, 4-O-Methylmannose, 2,4-Imidazolidinedione, 5-(2-methylpropyl)- (S) were found to have good affinity for targeted receptor, respectively. Through a 100-ns dynamic simulation research, binding interactions and stability between promising phytochemicals and the active residues of the studied enzymes were confirmed. The ADMET profiling of all identified compounds revealed that most of them could be qualified as biologically active with good absorption and permeation. Overall, the results highlighted the efficiency of ZH against the tested clinical pathogenic strains. The antimicrobial potential and the potency displayed by the identified compounds could imply their further pharmacological applications.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Mel , Ziziphus , Antibacterianos/farmacologia , Staphylococcus aureus , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas , Escherichia coli , Simulação de Acoplamento Molecular , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
3.
Comput Biol Med ; 157: 106786, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924735

RESUMO

Very long-chain fatty acids (VLCFAs) play a direct role in the development of a neurological disorder, X-linked adrenoleukodystrophy (X-ALD). Since ELOVL1 catalyzes the rate-limiting step of the synthesis of VLCFAs, it has emerged as an attractive target for the treatment of X-ALD. Recently two potent inhibitors, compound 22 (C22) and compound 27 (C27) have been reported to specifically inhibit human ELOVL1 but their structural basis of inhibition has not been explored. In the present study, we have used a homology model of human ELOVL1 to deduce the binding site and binding modes of C22 and C27. We have employed computational approaches to characterize the binding of C22 and C27. Initially, binding of hexacosanoyl-CoA (C26:0-CoA) to ELOVL1 was modelled and further validated by molecular dynamics (MD) simulation. We observed that the fatty acid tail of C26: CoA protrudes from a unique opening located at the occluded end of ELOVL1. Structural comparison of ELOVL1 with the crystal structure of ELOVL7 revealed that the unique opening was not present in human ELOVL7. Combined blind and focused molecular docking approaches revealed that C22 and C27 exhibit favourable binding in the same unique opening. Further, MD simulations and free binding energy calculations confirmed that C22 and C27 maintain the favourable binding in the unique opening of ELOVL1. Overall, our findings suggest that selective human ELOVL1 inhibitors block the binding of long tails of VLCFAs near the occluded end of ELOVL1. Present study will be helpful in the discovery and design of novel, selective and potent inhibitors of human ELOVL1.


Assuntos
Adrenoleucodistrofia , Doenças do Sistema Nervoso , Humanos , Adrenoleucodistrofia/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Simulação de Acoplamento Molecular
4.
ACS Omega ; 8(11): 9764-9774, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969404

RESUMO

Fatty acids play an important role in controlling the energy balance of mammals. De novo lipogenesis also generates a significant amount of lipids that are endogenously produced in addition to their ingestion. Fatty acid elongation beyond 16 carbons (palmitic acid), which can lead to the production of very long chain fatty acids (VLCFA), can be caused by the rate-limiting condensation process. Seven elongases, ELOVL1-7, have been identified in mammals and each has a unique substrate specificity. Researchers have recently developed a keen interest in the elongation of very long chain fatty acids protein 1 (ELOVL1) enzyme as a potential treatment for a variety of diseases. A number of neurological disorders directly or indirectly related to ELOVL1 involve the elongation of monounsaturated (C20:1 and C22:1) and saturated (C18:0-C26:0) acyl-CoAs. VLCFAs and ELOVL1 have a direct impact on the neurological disease. Other neurological symptoms such as ichthyotic keratoderma, spasticity, and hypomyelination have also been linked to the major enzyme (ELOVL1). Recently, ELOVL1 has also been heavily used to treat a number of diseases. The current review focuses on in-depth unique insights regarding the role of ELOVL1 as a therapeutic target and associated neurological disorders.

5.
Life (Basel) ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36836905

RESUMO

BACKGROUND: Marketed fish and shellfish are a source of multidrug-resistant and biofilm-forming foodborne pathogenic microorganisms. METHODS: Bacteria isolated from Sparus aurata and Penaeus indicus collected from a local market in Hail region (Saudi Arabia) were isolated on selective and chromogenic media and identified by using 16S RNA sequencing technique. The exoenzyme production and the antibiotic susceptibility patterns of all identified bacteria were also tested. All identified bacteria were tested for their ability to form biofilm by using both qualitative and quantitative assays. RESULTS: Using 16S RNA sequencing method, eight genera were identified dominated by Vibrio (42.85%), Aeromonas (23.80%), and Photobacterium (9.52%). The dominant species were V. natrigens (23.8%) and A. veronii (23.80%). All the identified strains were able to produce several exoenzymes (amylases, gelatinase, haemolysins, lecithinase, DNase, lipase, and caseinase). All tested bacteria were multidrug-resistant with a high value of the multiple antibiotic index (MARI). The antibiotic resistance index (ARI) was about 0.542 for Vibrio spp. and 0.553 for Aeromonas spp. On Congo red agar, six morphotypes were obtained, and 33.33% were slime-positive bacteria. Almost all tested microorganisms were able to form a biofilm on glass tube. Using the crystal violet technique, the tested bacteria were able to form a biofilm on glass, plastic, and polystyrene abiotic surfaces with different magnitude. CONCLUSIONS: Our findings suggest that marketed S. aurata and P. indicus harbor various bacteria with human interest that are able to produce several related-virulence factors.

6.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364077

RESUMO

To combat emerging antimicrobial-resistant microbes, there is an urgent need to develop new antimicrobials with better therapeutic profiles. For this, a series of 13 new spiropyrrolidine derivatives were designed, synthesized, characterized and evaluated for their in vitro antimicrobial, antioxidant and antidiabetic potential. Antimicrobial results revealed that the designed compounds displayed good activity against clinical isolated strains, with 5d being the most potent (MIC 3.95 mM against Staphylococcus aureus ATCC 25923) compared to tetracycline (MIC 576.01 mM). The antioxidant activity was assessed by trapping DPPH, ABTS and FRAP assays. The results suggest remarkable antioxidant potential of all synthesized compounds, particularly 5c, exhibiting the strongest activity with IC50 of 3.26 ± 0.32 mM (DPPH), 7.03 ± 0.07 mM (ABTS) and 3.69 ± 0.72 mM (FRAP). Tested for their α-amylase inhibitory effect, the examined analogues display a variable degree of α-amylase activity with IC50 ranging between 0.55 ± 0.38 mM and 2.19 ± 0.23 mM compared to acarbose (IC50 1.19 ± 0.02 mM), with the most active compounds being 5d, followed by 5c and 5j, affording IC50 of 0.55 ± 0.38 mM, 0.92 ± 0.10 mM, and 0.95 ± 0.14 mM, respectively. Preliminary structure-activity relationships revealed the importance of such substituents in enhancing the activity. Furthermore, the ADME screening test was applied to optimize the physicochemical properties and determine their drug-like characteristics. Binding interactions and stability between ligands and active residues of the investigated enzymes were confirmed through molecular docking and dynamic simulation study. These findings provided guidance for further developing leading new spiropyrrolidine scaffolds with improved dual antimicrobial and antidiabetic activities.


Assuntos
Anti-Infecciosos , Antioxidantes , Antioxidantes/química , Simulação de Acoplamento Molecular , Quinoxalinas , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antibacterianos/química , Anti-Infecciosos/farmacologia , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-35966725

RESUMO

In consideration of the emergence of novel drug-resistant microbial strains and the increase in the incidences of various cancers throughout the world, honey could be utilized as a great alternative source of potent bioactive compounds. In this context, this study pioneers in reporting the phytochemical profiling and the antimicrobial, antioxidant, and anticancer properties of Acacia honey (AH) from the Hail region of Saudi Arabia, assessed using in vitro and molecular docking approaches. The phytochemical profiling based on high-resolution liquid chromatography-mass spectrometry (HR-LCMS) revealed eight compounds and three small peptide-like proteins as the constituents. The honey samples exhibited promising antioxidant activities (DPPH-IC50 = 0.670 mg/mL; ABTS-IC50 = 1.056 mg/mL; ß-carotene-IC50 > 5 mg/mL). In the well-diffusion assay, a high mean growth inhibition zone (mGIZ) was observed against Staphylococcus aureus (48.33 ± 1.53 mm), Escherichia coli ATCC 10536 (38.33 ± 1.53 mm), and Staphylococcus epidermidis ATCC 12228 (39.33 ± 1.15 mm). The microdilution assay revealed that low concentrations of AH could inhibit the growth of almost all the evaluated bacterial and fungal strains, with the minimal bactericidal concentration values (MBCs) ranging from 75 mg/mL to 300 mg/mL. On the contrary, high AH concentrations were required to kill the tested microorganisms, with the minimal bactericidal concentration values (MBCs) ranging from approximately 300 mg/mL to over 600 mg/mL and the minimal fungicidal concentration values (MFCs) of approximately 600 mg/mL. The AH exhibited effective anticancer activity in a dose-dependent manner against breast (MCF-7), colon (HCT-116), and lung (A549) cancer cell lines, with the corresponding IC50 values of 5.053 µg/mL, 5.382 µg/mL, and 6.728 µg/mL, respectively. The in silico investigation revealed that the observed antimicrobial, antioxidant, and anticancer activities of the constituent compounds of AH are thermodynamically feasible, particularly those of the tripeptides (Asp-Trp-His and Trp-Arg-Ala) and aminocyclitol glycoside. The overall results highlighted the potential of AH as a source of bioactive compounds with significant antimicrobial, antioxidant, and anticancer activities, which could imply further pharmacological applications of AH.

8.
Microorganisms ; 10(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630468

RESUMO

Quorum sensing (QS) controls the expression of diverse biological traits in bacteria, including virulence factors. Any natural bioactive compound that disables the QS system is being considered as a potential strategy to prevent bacterial infection. Various biological activities of biosurfactants have been observed, including anti-QS effects. In the present study, we investigated the effectiveness of a biosurfactant derived from Lactiplantibacillus plantarum on QS-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Chromobacterium violaceum. The structural analogues of the crude biosurfactant were identified using gas chromatography-mass spectrometry (GC-MS). Moreover, the inhibitory prospects of identified structural analogues were assessed with QS-associated CviR, LasA, and LasI ligands via in silico molecular docking analysis. An L. plantarum-derived biosurfactant showed a promising dose-dependent interference with the production of both violacein and acyl homoserine lactone (AHL) in C. violaceum. In P. aeruginosa, at a sub-MIC concentration (2.5 mg/mL), QS inhibitory activity was also demonstrated by reduction in pyocyanin (66.63%), total protease (60.95%), LasA (56.62%), and LasB elastase (51.33%) activity. The swarming motility and exopolysaccharide production were also significantly reduced in both C. violaceum (61.13%) and P. aeruginosa (53.11%). When compared with control, biofilm formation was also considerably reduced in C. violaceum (68.12%) and P. aeruginosa (59.80%). A GC-MS analysis confirmed that the crude biosurfactant derived from L. plantarum was a glycolipid type. Among all, n-hexadecanoic acid, oleic acid, and 1H-indene,1-hexadecyl-2,3-dihydro had a high affinity for CviR, LasI, and LasA, respectively. Thus, our findings suggest that the crude biosurfactant of L. plantarum can be used as a new anti-QS/antibiofilm agent against biofilm-associated pathogenesis, which warrants further investigation to uncover its therapeutic efficacy.

9.
Folia Parasitol (Praha) ; 692022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35145048

RESUMO

In the present study, we have investigated the role of antimalarial drug halofantrine (HF) in inducing the sterile protection against challenges with sporozoites of the live infectious Plasmodium yoelii (Killick-Kendrick, 1967) in Swiss mice malaria model. We observed that during the first to third sequential sporozoite inoculation cycles, blood-stage patency remains the same in the control and chemoprophylaxis under HF drug cover (CPS-HF) groups. However, a delayed blood-stage infection was observed during the fourth and fifth sporozoite challenges and complete sterile protection was produced following the sixth sporozoite challenge in CPS-HF mice. We also noticed a steady decline in liver stage parasite load after 3th to 6th sporozoite challenge cycle in CPS-HF mice. CPS-HF immunisation results in a significant up-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-12 and iNOS) and down-regulation of anti-inflammatory cytokines (IL-10 and TGF-ß) mRNA expression in hepatic mononuclear cells (HMNC) and spleen cells in the immunised CPS-HF mice (after 6th sporozoite challenge) compared to control. Overall, our study suggests that the repetitive sporozoite inoculation under HF drug treatment develops a strong immune response that confers protection against subsequent challenges with sporozoites of P. yoelii.


Assuntos
Malária , Preparações Farmacêuticas , Plasmodium yoelii , Animais , Quimioprevenção , Imunização , Malária/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Fenantrenos
10.
Life (Basel) ; 13(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36675984

RESUMO

Cancer is one of the major causes of death worldwide. The repercussions of conventional therapeutic approaches present a challenge in the delivery of new effective treatments. Thus, more attention is being awarded to natural products, mainly honey. Honey could be the basis for the development of new therapies for cancer patients. The aim of this study is to assess the phytochemical profiling, antioxidant, drug-likeness properties, and anticancer activity of Ziziphus honey (ZH) derived from the Hail region of Saudi Arabia. The phytochemical profiling using high resolution-liquid chromatography mass spectrometry (HR-LCMS) revealed 10 compounds belonging to several familial classes and one tripeptide. Potential antioxidant activity was noted as assessed by DPPH (IC50 0.670 mg/mL), ABTS (IC50 3.554 mg/mL), and ß-carotene (IC50 > 5 mg/mL). The ZH exerted a notable cytotoxic effect in a dose-dependent manner against three cancer cell lines: lung (A549), breast (MCF-7), and colon (HCT-116), with respective IC50 values of 5.203%, 6.02%, and 7.257%. The drug-likeness investigation unveiled that most of the identified compounds meet Lipinski's rule. The molecular docking analysis revealed interesting antioxidant and anticancer activities for most targeted proteins and supported the in vitro findings. The Miraxanthin-III compound exhibited the most stabilized interaction. This study provides deeper insights on ZH as prominent source of bioactive compounds with potent antioxidant and anticancer effects.

11.
Antibiotics (Basel) ; 10(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34943758

RESUMO

Biosurfactants derived from different microbes are an alternative to chemical surfactants, which have broad applications in food, oil, biodegradation, cosmetic, agriculture, pesticide and medicine/pharmaceutical industries. This is due to their environmentally friendly, biocompatible, biodegradable, effectiveness to work under various environmental conditions and non-toxic nature. Lactic acid bacteria (LAB)-derived glycolipid biosurfactants can play a major role in preventing bacterial attachment, biofilm eradication and related infections in various clinical settings and industries. Hence, it is important to explore and identify the novel molecule/method for the treatment of biofilms of pathogenic bacteria. In the present study, a probiotic Lactobacillus rhamnosus (L. rhamnosus) strain was isolated from human breast milk. Firstly, its ability to produce biosurfactants, and its physicochemical and functional properties (critical micelle concentration (CMC), reduction in surface tension, emulsification index (% EI24), etc.) were evaluated. Secondly, inhibition of bacterial adhesion and biofilm eradication by cell-bound biosurfactants from L. rhamnosus was performed against various biofilm-forming pathogens (B. subtilis, P. aeruginosa, S. aureus and E. coli). Finally, bacterial cell damage, viability of cells within the biofilm, exopolysaccharide (EPS) production and identification of the structural analogues of the crude biosurfactant via gas chromatography-mass spectrometry (GC-MS) analysis were also evaluated. As a result, L. rhamnosus was found to produce 4.32 ± 0.19 g/L biosurfactant that displayed a CMC of 3.0 g/L and reduced the surface tension from 71.12 ± 0.73 mN/m to 41.76 ± 0.60 mN/m. L. rhamnosus cell-bound crude biosurfactant was found to be effective against all the tested bacterial pathogens. It displayed potent anti-adhesion and antibiofilm ability by inhibiting the bacterial attachment to surfaces, leading to the disruption of biofilm formation by altering the integrity and viability of bacterial cells within biofilms. Our results also confirm the ability of the L. rhamnosus cell-bound-derived biosurfactant to damage the architecture of the biofilm matrix, as a result of the reduced total EPS content. Our findings may be further explored as a green alternative/approach to chemically synthesized toxic antibiofilm agents for controlling bacterial adhesion and biofilm eradication.

12.
Antibiotics (Basel) ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34827310

RESUMO

Biosurfactants are surface-active molecules of microbial origin and alternatives to synthetic surfactants with various applications. Due to their environmental-friendliness, biocompatibility, biodegradability, effectiveness to work under various environmental conditions, and non-toxic nature, they have been recently recognized as potential agents with therapeutic and commercial importance. The biosurfactant produced by various probiotic lactic acid bacteria (LAB) has enormous applications in different fields. Thus, in vitro assessment of biofilm development prevention or disruption by natural biosurfactants derived from probiotic LAB is a plausible approach that can lead to the discovery of novel antimicrobials. Primarily, this study aims to isolate, screen, and characterize the functional and biomedical potential of biosurfactant synthesized by probiotic LAB Pediococcus pentosaceus (P. pentosaceus). Characterization consists of the assessment of critical micelle concentration (CMC), reduction in surface tension, and emulsification index (% EI24). Evaluation of antibacterial, antibiofilm, anti-QS, and anti-adhesive activities of cell-bound biosurfactants were carried out against different human pathogenic bacteria (B. subtilis, P. aeruginosa, S. aureus, and E. coli). Moreover, bacterial cell damage, viability of cells within the biofilm, and exopolysaccharide (EPS) production were also evaluated. As a result, P. pentosaceus was found to produce 4.75 ± 0.17 g/L biosurfactant, which displayed a CMC of 2.4 ± 0.68 g/L and reduced the surface tension from 71.11 ± 1.12 mN/m to 38.18 ± 0.58 mN/m. P. pentosaceus cells bound to the crude biosurfactant were found to be effective against all tested bacterial pathogens. It exhibited an anti-adhesion ability and impeded the architecture of the biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total EPS content. Furthermore, the crude biosurfactant derived from P. pentosaceus was structurally characterized as a lipoprotein by GC-MS analysis, which confirms the presence of lipids and proteins. Thus, our findings represent the potent anti-adhesion and antibiofilm potential of P. pentosaceus crude biosurfactant for the first time, which may be explored further as an alternative to antibiotics or chemically synthesized toxic antibiofilm agents.

13.
3 Biotech ; 11(11): 465, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34745816

RESUMO

Malaria represents one of the major life-threatening diseases that poses a huge socio-economic impact, worldwide. Chemoprophylaxis vaccination using a relatively low number of wild-type infectious sporozoites represents an attractive and effective vaccine strategy against malaria. However, the role of immune responses to pre-erythrocytic versus blood-stage parasites in protection against different antimalarial drugs remains unclear. Here, in the present study, we explored the immune responses against the repetitive inoculation of live Plasmodium yoelii (P. yoelii) sporozoites in an experimental Swiss mouse model under antimalarial drug lumefantrine chemoprophylaxis (CPS-LMF). We monitored the liver stage parasitic load, pro/anti-inflammatory cytokines expression, and erythrocytic stage patency, following repetitive cycles of sporozoites inoculations. It was found that repetitive sporozoites inoculation under CPS-LMF results in delayed blood-stage infection during the fourth sporozoites challenge, while sterile protection was produced in mice following the fifth cycle of sporozoites challenge. Intriguingly, we observed a significant up-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α and IL-12) and iNOS response and down-regulation of anti-inflammatory cytokines (IL-4, IL-10 and TGF-ß) in the liver HMNC (hepatic mononuclear cells) and spleen cells after 4th and 5th cycle of sporozoites challenge in the CPS-LMF mice. Meanwhile, we also noticed that the liver stage parasites load under CPS-LMF immunization has gradually reduced after 2nd, 3rd, 4th and 5th sporozoites challenge. Overall, our study suggests that chemoprophylaxis vaccination under LMF drug cover develops strong immune responses and confer superior long-lasting protection against P. yoelii sporozoites. Furthermore, this vaccination strategy can be used to study the protective and stage-specific immunity against new protective antigens. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03022-0.

14.
Medicina (Kaunas) ; 57(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34684095

RESUMO

Urogenital schistosomiasis is caused by Schistosoma haematobium (S. haematobium) infection, which has been linked to the development of bladder cancer. In this study, three repurposing drugs, ivermectin, arteether and praziquantel, were screened to find the potent drug-repurposing candidate against the Schistosoma-associated bladder cancer (SABC) in humans by using computational methods. The biology of most glutathione S-transferases (GSTs) proteins and vascular endothelial growth factor (VEGF) is complex and multifaceted, according to recent evidence, and these proteins actively participate in many tumorigenic processes such as cell proliferation, cell survival and drug resistance. The VEGF and GSTs are now widely acknowledged as an important target for antitumor therapy. Thus, in this present study, ivermectin displayed promising inhibition of bladder cancer cells via targeting VEGF and GSTs signaling. Moreover, molecular docking and molecular dynamics (MD) simulation analysis revealed that ivermectin efficiently targeted the binding pockets of VEGF receptor proteins and possessed stable dynamics behavior at binding sites. Therefore, we proposed here that these compounds must be tested experimentally against VEGF and GST signaling in order to control SABC. Our study lies within the idea of discovering repurposing drugs as inhibitors against the different types of human cancers by targeting essential pathways in order to accelerate the drug development cycle.


Assuntos
Preparações Farmacêuticas , Neoplasias da Bexiga Urinária , Animais , Reposicionamento de Medicamentos , Humanos , Ivermectina/farmacologia , Simulação de Acoplamento Molecular , Schistosoma haematobium , Neoplasias da Bexiga Urinária/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular
15.
Plants (Basel) ; 10(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068885

RESUMO

Selaginella species are known to have antimicrobial, antioxidant, anti-inflammatory, anti-diabetic as well as anticancer effects. However, no study has examined the cytotoxic and anti-metastatic efficacy of Selaginella repanda (S. repanda) to date. Therefore, this study aimed to evaluate the potential anti-metastatic properties of ethanol crude extract of S. repanda in human non-small-cell lung (A-549) and colorectal cancer (HCT-116) cells with possible mechanisms. Effect of S. repanda crude extract on the growth, adhesion, migration and invasion of the A-549 and HCT-116 were investigated. We demonstrated that S. repanda crude extract inhibited cell growth of metastatic cells in a dose and time dependent manner. Incubation of A-549 and HCT-116 cells with 100-500 µg/mL of S. repanda crude extract significantly inhibited cell adhesion to gelatin coated surface. In the migration and invasion assay, S. repanda crude extract also significantly inhibited cellular migration and invasion in both A-549 and HCT-116 cells. Moreover, reverse transcription-polymerase chain reaction, and real-time PCR (RT-PCR) analysis revealed that the activity and mRNA level of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP) were inhibited. While the activity of tissue inhibitor matrix metalloproteinase 1 (TIMP-1); an inhibitor of MMPs was stimulated by S. repanda crude extract in a concentration-dependent manner. Therefore, the present study not only indicated the inhibition of motility and invasion of malignant cells by S. repanda, but also revealed that such effects were likely associated with the decrease in MMP-2/-9 expression of both A-549 and HCT-116 cells. This further suggests that S. repanda could be used as a potential source of anti-metastasis agent in pharmaceutical development for cancer therapy.

16.
Bull Cancer ; 108(9): 798-805, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34140154

RESUMO

INTRODUCTION: Apoptosis deregulation have been associated to tumorigenesis process and was highlighted as a prominent hallmark of cancer. Several mutations have been reported in several forms of Blood cancer. However, it has never been investigated in familial aggregations of hematological malignancies. METHODS: In this study, we performed a mutational analysis by sequencing the entire coding regions in four key apoptotic genes FAS, FASLG, CASP8 and CASP10 in 92 independent families belonging to French and Tunisian populations and diagnosed with several forms of familial hematological malignancies. RESULTS: We report 15 genetic variations among which 7 were previously reported in several form of cancers and have a potential effect on gene expression. Particularly, the CASP8 variants p.Asp302His and p.Lys337Lys were detected in 15% and 10% of our group of patients respectively and were previously reported in association to breast cancer and to breast cancer susceptibility. DISCUSSION: In this study, we do not report the underlining deleterious mutations in familial hematological malignancies, but we describe some variants with potential risk of developing blood cancer. To gain further insights on the association between apoptosis pathway deregulation and familial hematological malignancies, more apoptotic genes should be investigated.


Assuntos
Apoptose/genética , Caspase 10/genética , Caspase 8/genética , Proteína Ligante Fas/genética , Neoplasias Hematológicas/genética , Receptor fas/genética , Alelos , Estudos Transversais , Análise Mutacional de DNA/métodos , Família , França , Predisposição Genética para Doença , Humanos , Íntrons , Mutação de Sentido Incorreto , Perforina/genética , Tunísia
17.
Bull Cancer ; 108(7-8): 718-724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34052033

RESUMO

Genetic predisposition has been always noted in the context of familial hematological malignancies. Epidemiological studies have provided evidence consisting of an increased risk to develop blood cancer in relatives diagnosed with the same pathology and characterized by early age at diagnosis and higher severity compared to sporadic forms. With the emergence of new genomic testing approaches, the prevalence of familial aggregations of hematological malignancies seems to be under estimated. The heterogeneity of clinical features explains the wide number of genes' mutations reported to date and the variable penetrance of variants. Nevertheless, the genetic basis of familial hematological malignancies is still not well understood. Identifying the genetic background in familial aggregations provides a valuable tool for prognostic evaluation, personalized treatment and better genetic counseling in high-risk families. Herein, we provide an overview of genes reported in the last few years in association to hematological malignancies including familial form of Hodgkin Lymphoma, Non-Hodgkin Lymphoma, Chronic Lymphocytic Leukemia, acute Myeloid Leukemia and acute Lymphoblastic Leukemia.


Assuntos
Predisposição Genética para Doença , Neoplasias Hematológicas/genética , Fatores Etários , Família , Neoplasias Hematológicas/epidemiologia , Doença de Hodgkin/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Mieloide Aguda/genética , Linfoma não Hodgkin/genética , Mutação , Penetrância , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico
18.
Molecules ; 26(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540783

RESUMO

In this study, we investigated the bioactive potential (antibacterial and antioxidant), anticancer activity and detailed phytochemical analysis of Selaginellarepanda (S. repanda) ethanolic crude extract for the very first time using different in vitro approaches. Furthermore, computer-aided prediction of pharmacokinetic properties and safety profile of the identified phytoconstituents were also employed in order to provide some useful insights for drug discovery. S. repanda, which is a rich source of potent natural bioactive compounds, showed promising antibacterial activity against the tested pathogenic bacteria (S. aureus, P. aeruginosa, E. coli and S. flexneri). The crude extract displayed favorable antioxidant activity against both 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 231.6 µg/mL) and H2O2 (IC50 = 288.3 µg/mL) molecules. S. repanda also showed favorable and effective anticancer activity against all three malignant cancer cells in a dose/time dependent manner. Higher activity was found against lung (A549) (IC50 = 341.1 µg/mL), followed by colon (HCT-116) (IC50 = 378.8 µg/mL) and breast (MCF-7) (IC50 = 428.3 µg/mL) cancer cells. High resolution-liquid chromatography-mass spectrometry (HR-LC-MS) data of S. repanda crude extract revealed the presence of diverse bioactive/chemical components, including fatty acids, alcohol, sugar, flavonoids, alkaloids, terpenoids, coumarins and phenolics, which can be the basis and major cause for its bioactive potential. Therefore, achieved results from this study confirmed the efficacy of S. repanda and a prospective source of naturally active biomolecules with antibacterial, antioxidant and anticancer potential. These phytocompounds alone with their favorable pharmacokinetics profile suggests good lead and efficiency of S. repanda with no toxicity risks. Finally, further in vivo experimental investigations can be promoted as probable candidates for various therapeutic functions, drug discovery and development.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Selaginellaceae/química , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Humanos , Neoplasias Pulmonares/patologia , Extratos Vegetais/farmacocinética , Extratos Vegetais/toxicidade
19.
Ann Hematol ; 96(10): 1635-1639, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28752392

RESUMO

The genetic predisposition to familial hematological malignancies has been previously reported highlighting inherited gene mutations. Several genes have been reported but genetic basis remains not well defined. In this study, we extended our investigation to a potential candidate GATA2 gene which was analyzed by direct sequencing in 119 cases including familial aggregations with a variety of hematological malignancies and sporadic acute leukemia belonging to Tunisian and French populations. We reported a deleterious p.Arg396Gln GATA2 mutation in one patient diagnosed with both sporadic acute myeloid leukemia (AML) and breast cancer. We also reported several GATA2 variations in familial cases. The absence of deleterious mutations in this large cohort of familial aggregations of hematological malignancies may strengthen the hypothesis that GATA2 mutations are an important predisposing factor, although as a secondary genetic event, required for the development of overt malignant disease.


Assuntos
Família , Fator de Transcrição GATA2/genética , Neoplasias Hematológicas/genética , Leucemia Mieloide Aguda/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Substituição de Aminoácidos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Feminino , França/epidemiologia , Predisposição Genética para Doença , Neoplasias Hematológicas/epidemiologia , Humanos , Leucemia Mieloide Aguda/epidemiologia , Masculino , Tunísia/epidemiologia
20.
Bull Cancer ; 104(2): 123-127, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27866680

RESUMO

INTRODUCTION: Genetic predisposition to familial hematological malignancies was previously described through several epidemiological analyses, but the genetic basis remains unclear. The tumor-suppressor ARLTS1 gene was previously described in sporadic hematological malignancies and familial cancer context. METHODS: In this study, we sequence the ARLTS1 gene in 100 patients belonging to 88 independent Tunisian and French families. RESULTS: After gene sequencing, we report 8 genetic variations, most of which were previously reported in several cancer forms. The most common variants were W149X and C148R and were previously associated to B-cell chronic lymphocytic leukemia and to high-risk of familial breast cancer. CONCLUSIONS: These results emphasize the fact that ARLTS1 gene mutations can be considered as a potential predisposing factor in familial hematological malignancies and other several cancer forms.


Assuntos
Fatores de Ribosilação do ADP/genética , Genes Supressores de Tumor , Predisposição Genética para Doença , Variação Genética , Neoplasias Hematológicas/genética , Neoplasias da Mama/genética , Estudos de Coortes , Feminino , França , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...